<u>Lycée Khniss</u>	EXAMEN BAC BLANC	Prof:
A.S 2007-2008	Mathématiques durée 3h	4 ^{éme} Sc.Exp Le 09/05/2008

EXERCICE N°1

· · · ·

Dans l'espace rapporté à un repère orthonormé (o, i, j, k) on considère les points A(1, 0, 0), B(1, -1, 0), $C(1+\cos\theta, -1, \sin\theta)$ et D(0, -1, 0)

- 1) Montrer que ABD est un triangle rectangle en B.
- 2) Soit S: I'ensemble des points M(x, y, z) tel que : $x^2 + y^2 + z^2 2x + 2y + 1 = 0$
 - a) Montrer que S est la sphère de centre B et de rayon 1. b) Vérifier que C et D sont deux points de S.
 - c) Pour quelles valeurs de θ , [CD] est un diamètre de S.
- **3)** Soit Q le plan d'équation : x y + z 1 = 0.
 - a) Montrer que (AD) est incluse dans Q.
 - b) Montrer que $S \cap Q$ est un cercle (ζ) dont on précisera le centre et le rayon.
- **4)** Soit le plan P_{θ} : $(\cos \theta) x + (\sin \theta) z \cos \theta 1 = 0$.
 - a) Montrer que (AB) est parallèle à P_A.
 - b) Montrer que P_{θ} est tangent à S en C.

EXERCICE N°2

On considère un dé cubique parfait dont les faces sont numérotées : 0, 0, 0, 0, 1, 1 et deux urnes U_1 et U_2

U₁: contient 3 boules blanches et 2 boules noires

U₂: contient 2 boules blanches et 3 boules noires

1) On tire simultanément 3 boules de U₁.

Soit X la variable aléatoire égale au nombre de boules blanches obtenues. Déterminer la loi de probabilité de X. Calculer son écart type.

- 2) Un joueur lance le dé une fois :
 - S'il obtient la face 0, il tire simultanément deux boules de U₁.
- s'il obtient la face 1, il tire successivement et sans remise deux boules de U₂. Soit l'évènement " S " : le joueur obtient de boules de couleurs différentes.
 - a) Calculer la probabilité d'obtenir S sachant qu'il a obtenu la face 0.
 - b) Calculer la probabilité d'obtenir S sachant qu'il a obtenu la face 1.
 - c) En déduire que P(S) = 3/5
- **3)** lorsque S est réalisé il gagne 2 Dinars, sinon il perd 2 Dinars.

Il joue 4 fois de suite on remettant après chaque tirage les boules dans leurs urnes d'origines. Soit Y le gain algébrique réalisé lors des 4 jeux.

(exemple : si S est réalisé 4 fois il gagne 8 Dinars)

- a) Déterminer la loi de probabilité de y.
- b) Le jeu est-il favorable?

PROBLEME

On considère les fonctions u et f définies sur]0, $+\infty$ [par :

u (x) =
$$x^2 - x - Logx$$
 et f(x) = $\frac{\log x}{x}$

On note (C) la courbe représentative de f dans un repère orthonormé R = (o, i, j) d'unité graphique 3 cm

- 1) a) Dresser le tableau de variation de la fonction u.
 - b) En déduire que pour tout x > 0, $u(x) \ge 0$.
- 2) a) Dresser le tableau de variation de la fonction f.
 - b) Déterminer une équation cartésienne de la tangente (T) à la courbe (C) au point d'abscisse 1.
 - c) Déterminer la position relative de la courbe (T) par rapport à la courbe (C).
 - d) Tracer la courbe (C) et la droite (T).
 - e) Calculer, en cm², l'aire de la partie du plan limitée par la courbe (C), la droite (T) et les droites $D_1: x = \frac{1}{2}$ et $D_2: x = e$.
- **3)** Soit la fonction g définie sur IR par : $g(x) = f(e^x)$
 - a) Vérifier que pour tout x de IR, $g(x) = x e^{-x}$. Montrer que g est décroissante sur $[1, +\infty[$
 - b) Pour tout réel x on pose $G(x) = \int_0^x t e^{-t} dt$.

Montrer à l'aide d'une intégration par parties, que : $\forall x \in IR$, $G(x) = 1 - e^{-x} - xe^{-x}$

- c) En déduire $\lim_{x\to +\infty} G(x)$.
- **4)** Soit $x \in [0, 1[$, pour tout $n \in IN^*$, on pose $I_n(x) = \int_0^x t^n e^{-t} dt$
 - a) Montrer que pour tout $n \in IN^*$ $0 \le I_n(x) \le \frac{1}{n+1}x^{n+1}$
 - b) En déduire $\lim_{n\to +\infty} I_n(x)$.
- **5)** Pour tout $n \in IN^*$ on pose $Un = \int_n^{n+1} g(t) dt$ et $S_n = U_1 + U_2 + ... + U_n$.
 - a) A l'aide d'un encadrement de g (t) pour $t \in [n, n+1]$ Montrer que pour tout $n \in IN^*$: $g(n+1) \le Un \le g(n)$
 - b) En déduire $\lim_{n\to +\infty} U_n$.
 - c) Montrer que pour tout $n \in IN^*$ $S_n = G(n+1) G(1)$
 - d) Déterminer $\lim_{n\to+\infty} S_n$.

Bon Travail